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1. Introduction

Frame structures are representative of basic elements of large-scale structure systems and
bridges, for example. When the objective of a large-scale space structure is considered, it is
assumed that the dynamic load affects both the structure under construction and the rendezvous
docking of the spacecraft. Flexural, longitudinal, and torsional waves applied on such a frame
structure propagate through structural members and then reflect at ends or junctions; they finally
form standing waves. These propagating waves are observed to constitute the entire dynamic
response. Dynamic response analysis and stress analysis become a significant problem when
strength evaluation is considered in design.
Doyle proposed a spectral element method using the fast Fourier transform (FFT) to analyze

wave propagation in frame structures [1,2]. In this method, the geometrically uniform member can
be replaced with only one spectral beam element; this ultimately reduces the total number of
degrees of freedom in the system. In addition, the propagation of flexural, longitudinal, and
torsional waves in members is accurately expressed because the exact solution of beam, rod, and
torsion bars can be used on the frequency domain. However, Doyle solved problems mainly on
infinite or semi-infinite beams because the use of the FFT always provides periodicity.
This paper presents a new spectral element method. In this method, the Laplace transform is

applied instead of the FFT, thereby avoiding the problem of periodicity. By this proposed
method, 3-D frame structures with finite-length beams can be treated practically.
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2. Spectral beam element stiffness matrix

The fundamental equation is derived on a flexural wave of a beam. Consider an elastic
beam with a uniform cross-section subjected to dynamic forces at two ends, as shown in
Fig. 1. It is also assumed that beam deformation depends on the Bernoulli–Euler beam
theory. An equilibrium equation and boundary conditions at the two ends are obtained as the
following:
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Here, E; I ;r;A; and L are, respectively, Young’s modulus, the second-moment inertia of cross-
section, the mass density, the area of the cross-section, and the length of beam; w is the transversal
displacement, which is the function of co-ordinate x and time t;N1 and N2 are external shear
forces at the left end and right end; M1 and M2 are external moments at the left end and right end;
subscripts 1 and 2 denote values at the left end and right end of the beam, respectively.
Next, the Laplace transform is applied to both sides of equilibrium in Eq. (1). In the

Laplace transform, the time derivative is replaced with Laplacian operator s: Therefore, Eq. (1) is
rewritten as
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Here, 4 denotes that the function is Laplace transformed. Eq. (3) is a differential equation of
order 4 with the co-ordinate x: The general solution of this equation can be expressed using
arbitrary constants C1;y;C4 as
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From the displacement #wðxÞ; nodal displacements may be determined as
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Fig. 1. Beam element, with uniform cross-section, subjected to dynamic forces at two ends.
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From Eqs. (4) and (6), one can solve for constants C1;y;C4 in terms of nodal displacement as
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Matrix ½B� is so complicated that details are omitted here. Considering Eqs. (7) and (4), the
displacement #wðxÞ is written in terms of nodal displacements as

#wðxÞ ¼ ½e�ikbx e�kbx e�ikbðL�xÞ e�kbðL�xÞ�½B�
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Substituting the above equation into boundary condition of Eq. (2) and expressing the results in a
matrix form yields
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where

a ¼ ðCSh þ SChÞðkbLÞ3=det; %a ¼ ðS þ ShÞðkbLÞ3=det;

b ¼ ð�CSh þ SChÞðkbLÞ=det; %b ¼ ð�S þ ShÞðkbLÞ=det;

g ¼ ð�C þ ChÞðkbLÞ2=det; %g ¼ SShðkbLÞ2=det;

det � 1� CCh; C � cos kbL; S � sin kbL;

Ch � cosh kbL; Sh � sinh kbL:

Eq. (9) is the fundamental equation on the flexural wave in the beam on the Laplace domain;
½KbðsÞ� is a stiffness matrix of the spectral beam element.

3. Spectral rod element stiffness matrix and spectral torsion bar element stiffness matrix

Fig. 2 shows a rod subjected to dynamic forces at two ends. The fundamental equation on the
longitudinal wave in a rod element is obtained in a way similar to that in the case of the beam
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element. As a result, the fundamental equation is expressed in matrix form as
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and ½KrðsÞ� is a stiffness matrix of the spectral rod element on the Laplace domain.
Fig. 3 shows nodal moments and rotations for a torsional bar element. The fundamental

equation on the torsional wave in a bar element is obtained as
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Here, G and J are the shearing modulus and torsional stiffness factor for the element
cross-section.
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Fig. 2. Nodal forces and displacements for rod element in axial loading.

Fig. 3. Nodal moments and rotations for torsional bar element.
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4. Global stiffness matrix

In this paper, 3-D frame structures are considered. Therefore, dynamic loading to a member of
a frame structure comprises axial loading, bending in each of the two principal planes, and
torsion. Fig. 4 shows the total set of forces and displacements.
The stiffness matrix for this case is obtained by superimposing individual cases of bending, axial

loading, and torsion, which are given by Eqs. (9), (10), and (12), respectively. As a result, the
fundamental equation for a member of frame structures on the Laplace domain is written in
matrix form as
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Transforming the stiffness matrix of the individual member to the global reference axes of a frame
structure and superimposing the transformed matrices provides the global stiffness matrix, ½KðsÞ�;
of a frame structure. Finally, the fundamental equation of the frame structure on the Laplace
domain is obtained as

f #Fg ¼ ½KðsÞ�f#ug; ð15Þ

ARTICLE IN PRESS

Fig. 4. Total set of forces and displacements of a member of frame structures.
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where f #Fg is the Laplace-transformed dynamic nodal force vector and f#ug is the Laplace-
transformed nodal displacement vector. These transforming and superimposing techniques are
similar to the case of conventional FEM [3].
Eq. (15) uses exact solutions for the beam, rod, and torsion bar on the Laplace domain; they

are, for example, given by Eq. (4). Therefore, a geometrically uniform member can be replaced by
a single spectral beam element.

5. Numerical Laplace transformation

The procedure for the calculation of the dynamic nodal displacement from fundamental
Eq. (15) is presented next. This procedure uses a numerical Laplace transformation.
From Eq. (15) and the definition of the inverse Laplace transform, nodal displacement on the

time domain is given as
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On the integral of the above equation, changing the variable of s ¼ sþ io provides the following
equation wherein s is some positive real constant:
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On the other hand, the definition of the Laplace transform yields the Laplace-transformed
dynamic force as
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Letting s ¼ sþ io in the above equation gives the following:
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The right side of Eq. (19) is similar to the Fourier integral of fFðtÞge�st: Therefore, using the FFT,
Eq. (19) is calculated numerically. By substituting the result into Eq. (17) and using the inverse
FFT, the right side of Eq. (17) is integrated numerically. Then, the nodal displacement is
numerically obtained.

6. Numerical result

The wave propagation of 3-D frame structures with finite-length beams is calculated
numerically according to the above-mentioned method. The result is compared with the
numerical solution obtained by conventional FEM using the Newmark method.
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6.1. Wave propagation analysis of a finite-length beam with two free ends

Table 1 shows the sizes and material properties of a beam with two free ends, which is subjected
to vertical dynamic force (shown in Fig. 5) at its center. Flexural wave propagation of this beam is
analyzed. Three nodes, which are two free ends and the loading point, are considered in spectral
element analysis; then, two spectral elements are used. The numerical Laplace transform here uses
the sampling rate DT ¼ 5 ms; the sampling point number N ¼ 2048; and the positive real
constant s ¼ 2p=NDT [4].
Fig. 6 shows the time history of total vertical displacement in the beam. Displacements

at arbitrary locations are calculated by Eq. (13). A flexural wave of a beam is sometimes
called a dispersive wave. Features of a dispersive wave are shown in Fig. 6, where the
higher frequency waves reach to the end sooner than the lower frequency waves. In addition,
Fig. 6 depicts the wave reflection at the free end and superimposition of waves. As a
result, results by the spectral element method very well represent the features of the flexural waves
of a beam.
Figs. 7 and 8 show a comparison of the spectral element and conventional FEM results for

displacements at the loading point and the free end, respectively. In using conventional FEM, the
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Table 1

Size and material steel properties of a beam with two free ends

Thickness (m) 2:50E–04
Width (m) 1:30E–02
Length (m) 10

E ðPaÞ 2.09E+11

r ðkg=m3Þ 7.80E+03

n 0.3

Fig. 5. Time history of dynamic force loading on the beam.
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beam is divided into 16; 32; and 96 elements. As the number of elements increase, numerical
results of conventional FEM agree with those of the spectral element method.

6.2. Dynamic response analysis of a 3-D frame structure with one end fixed

Table 2 shows the sizes and material properties of a frame member; Fig. 9 shows a 3-D frame
structure with one end fixed and the other end subjected to a dynamic force shown in Fig. 10.
Figs. 11 and 12 show a comparison of results for spectral element analysis and conventional FEM
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Fig. 6. Flexural wave propagation in the beam.

Fig. 7. Comparison of spectral element and conventional FEM results for displacements in the finite-length beam at the

loading point. Spectral element method: ——, FEM 16 elements: -�-�-, FEM 32 elements: - - - -, FEM 96 elements:??:
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Fig. 8. Comparison of spectral element and conventional FEM results for displacements in the finite-length beam at the

free end. Spectral element method: ——, FEM 16 elements: -�-�-, FEM 32 elements: - - - -, FEM 96 elements: ??:

Table 2

Size and material (aluminum) properties of a frame member

Radius (m) 2:00E–03
E ðPaÞ 7.03E+10

r ðkg=m3Þ 7.69E+03

n 0.345

Fig. 9. Shape and size of a 3-D frame structure with one end fixed and the other end subjected to a dynamic force.
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for displacements at the loading point and point A (shown in Fig. 9), respectively. In spectral
element analysis, each frame’s member is replaced with one spectral element; the sampling rate
DT ¼ 20 ms; the sampling point number N ¼ 1024; and the positive real constant s ¼ 2p=NDT :
In using conventional FEM, a frame member is divided into 1; 3; and 5 elements. Just as
in the case for the finite-length beam with two free ends, the results of conventional FEM
gradually approach the results of the spectral element method with an increased number of
elements.
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Fig. 10. Time history of dynamic force loading on the frame structure.

Fig. 11. Comparison of spectral element and conventional FEM results for displacements of the 3-D frame structure at

the loading point. Spectral element method: ——, FEM 1 element: -�-�-, FEM 3 elements: - - - -, FEM 5 elements: ??:
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7. Conclusion

This paper presented a new spectral element method using the numerical Laplace transform for
the wave propagation analysis of frame structures. Numerical results for a finite length beam and
a 3-D frame structure showed that the proposed method is practical.
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point A. Spectral element method: ——, FEM 1 element: -�-�-, FEM 3 elements: - - - -, FEM 5 elements: ??:
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